Power of Nondetreministic JAGs on Cayley graphs
نویسندگان
چکیده
The Immerman-Szelepcsenyi Theorem uses an algorithm for co-stconnectivity based on inductive counting to prove that NLOGSPACE is closed under complementation. We want to investigate whether counting is necessary for this theorem to hold. Concretely, we show that Nondeterministic Jumping Graph Autmata (ND-JAGs) (pebble automata on graphs), on several families of Cayley graphs, are equal in power to nondeterministic logspace Turing machines that are given such graphs as a linear encoding. In particular, it follows that ND-JAGs can solve co-st-connectivity on those graphs. This came as a surprise since Cook and Rackoff showed that deterministic JAGs cannot solve st-connectivity on many Cayley graphs due to their high self-similarity (every neighbourhood looks the same). Thus, our results show that on these graphs, nondeterminism provably adds computational power. The families of Cayley graphs we consider include Cayley graphs of abelian groups and of all finite simple groups irrespective of how they are presented and graphs corresponding to groups generated by various product constructions, including iterated ones. We remark that assessing the precise power of nondeterministic JAGs and in particular whether they can solve co-st-connectivity on arbitrary graphs is left as an open problem by Edmonds, Poon and Achlioptas. Our results suggest a positive answer to this question and in particular considerably limit the search space for a potential counterexample.
منابع مشابه
On the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملProduct of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملCOMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1310.8317 شماره
صفحات -
تاریخ انتشار 2013